ouokeralionalinalinalina

HYDRAULIC CYLINDER

Table of Contents

DG Hydraulic Cylinders for Vehicle————————————————————————————————————	
HSG*01 Series Hydraulic Cylinder————————————————————————————————————	
Y-HGI Series Cylinders————————————————————————————————————	
CD250/CG250 CD350/CG350 Heavy Duty10	
×	
(A)	
N'	

Note: The all details of the products including drawing and efficiency curve, please contact with us for more details. Email to guoke107@hotmail.com or Whatsapp +8613299042234

DG Hydraulic Cylinders for Vehicle

This is a double-acting hydraulic cylinder with single piston rod. Operating pressure is 16MPa, bore from 40~200mm, stroke≤2000mm.

recinical Date						
Madal	Bore size	Piston a	rea(cm²)	Thrust(N)	Pull	New stroke(mm)
widdei	(mm)	Piston side	Rod end side	16MPa	16MPa	wax. stroke(mm)
DG-J40C-E ₄ *	40	12.57	8.63	20160	13800	1200
DG-J50C-E ₄ *	50	19.64	13.48	31410	21560	1200
DG-J63C-E ₄ *	63 🔨	31.17	21.17	49870	33870	1600
DG-J80C-E ₄ *	80	50.27	34.27	80430	54980	1600
DG-J90C-E ₄ *	90	63.62	43.98	101790	70360	2000
DG-J100C-E ₄ *	100	78.54	53.91	125660	86260	2000
DG-J110C-E ₄ *	110	94.99	63.38	151980	101410	2000
DG-J125C-E ₄ *	125	122.72	83.13	196350	133010	2000
DG-J140C-E ₄ *	140	153.86	103.62	246300	165870	2000
DG-J150C-E ₄ *	150	176.72	119.97	282750	191940	2000
DG-J160C-E ₄ *	160	200.96	136.38	321540	218210	2000
DG-J180C-E ₄ *	180	254.34	175.84	406940	281340	2000
DG-J200C-E ₄ *	200	314.16	219.23	502660	350770	2000

Technical Date

HSG*01 Series Hydraulic Cylinder

Connecting type

HSG*01 series cylinder is a double-acting and single rod cylinder which piston rod driven by pressure oil move in two opposite direction and enable other moving parts reciprocating.

Technical Date

				•	Veloci	ty ratio			Min. stroke of
	Normal	Boro sizo	1.	33	1.	46		2	non-trunnion
Model	norma	DOTE SIZE	Rod	Max.	Rod	Max.	Rod	Max.	attachment
Widdei	(MPa)	(mm)	dia.	stroke	dia.	stroke	dia.	stroke	cylinder
	(IVIF d)	(1111)	d	S	d	S	d	S	S
			(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
HSG*01-40/dE		40	20	320	22	400	25	480	
HSG*01-50/dE		50 🖊	25	400	28	500	32	600	
HSG*01-63/dE		63	32	500	35	630	45	750	
HSG*01-80/dE	•	80	40	640	45	800	55	950	
HSG*01-80/dE		80	40	640	45	800	/	/	30
HSG*01-90/dE		90 🥖	45	720	50	900	63	1080	40
HSG*01-100/dE	AV	100	50	800	55	1000	70	1200	40
HSG*01-110/dE		110	55	880	63	1100	80	1320	40
HSG*01-125/dE	10	125	63	1000	70	1250	90	1500	35
HSG*01-140/dE		140	70	1120	80	1400	100	1680	45
HSG*01-150/dE		150	75	1200	85	1500	105	1800	50
HSG*01-160/dE		160	80	1280	90	1600	110	1900	40
HSG*01-180/dE		180	90	1450	100	1800	125	2150	45
HSG*01-200/dE		200	100	1600	110	2000	140	2400	45
HSG*01-220/dE]	220	110	1760	125	2200	160	2640	50
HSG*01-250/dE		250	125	200	140	2500	180	3000	55

★Cylinder H	ead and Body Attachment	Table 1
Order	Attachment	Remark
1	Eye attachment with bush	
2	Eye attachment with oscillating bearing	
3	Trunnion attachment	
4	Front flange attachment	For cylinder D≥Φ80
5	Mid-body flange attachment	

End Attachments	Table 2
Attachment	Remark
Rod end male thread attachment	
Rod end female thread attachment	For bore D≥Φ63
Rod end male thread and eye with bush	
Rod end female thread and eye with bush	For bore D≥Φ63
Rod end male thread and eye with oscillating bearing	
Rod end female thread and eye with bush	For bore D≥Φ63
Integral rod end eye with bush	
Integral rod end eye with oscillating bearing	Only for Φ40 and Φ50 cylinders
	End Attachments Attachment Rod end male thread attachment Rod end female thread attachment Rod end male thread and eye with bush Rod end female thread and eye with bush Rod end male thread and eye with oscillating bearing Rod end female thread and eye with bush Integral rod end eye with oscillating bearing Integral rod end eye with oscillating bearing

★ Cushioning		Table 3
Order	Location of cushioning 🦯 🔪	Remark
0	Without cushioning 🔨 👌	
1	At both ends of piston rod	Without cushioning doe bores Φ40, Φ50 and Φ63
2	At head of cylinder	At velocity ratio φ =2, only cylinder head has cushioning
3	At end of piston rod	

 \mathcal{A}

Note: 1. Velocity ϕ ratio is ratio of effective area of piston to that of rod chamber

2. Max. stroke: when φ =1.33, S=8D(bore size)

when $\varphi = 1.46$, S=10D(bore size)

when φ =2, S=12D(bore size)

- 3. For bore size of Φ 63, Φ 80, Φ 100, Φ 125, Φ 150 and Φ 160, when velocity ratio φ 1.46, cylinder cover adopts clip ring attachment.
- 4. If S > max. stroke specified in Table is needed, contact with us.
- 5. For min. stroke of cylinder with trunnion attachment, see Table 5,6,7 and 8.
- **6**. Φ250~Φ700 cylinder can be available

Hydraulic cylinder in conformity with the metallurgical industrial standard

This series cylinder is double-acting piston type hydraulic actuator which can push its piston rod to move in both directions so that its piston will drive other working parts to reciprocate in line. With features, as well as integral damper and air bleeder, it is suitable for metallurgical industry and is in conformity with the specification on mounting and connecting ISO 6020/1 - 1981.

Order Procedure:

- 1. If the cylinders of 6.3^{-16} MPa are needed, please fill "E" in your order
- Mounting dimension are according to the codes in the table except that of mid-body trunnion attachment type; For connecting dimensions, refer to tables 5~17
- 3. "H" code represents types with cushioning; omit without cushioning
- 4. For stroke, refer to table 4
- 5. Specify your special requirements for operating fluid, temperature, test, painting and packing.
- 6. End rod eye should be separately ordered.

Technical Date:

6 0 0	40 [*]	50 [*]	63 [*]	80 [*]	90	100 [*]	110	125 [*]	140	150	160 [*]	180	200 [*]	220	250 [*]	280	320 [*]
1.46	22 [*]	28 [*]	3 6 [*]	45[*]	50	56 [*]	63	70 [*]	80	85	90 [*]	100	110[*]	125	140[*]	160	180[*]
2	28[*]	36	45[*]	56 [*]	63	70 [*]	80	90 [*]	100	105	110[*]	125	140[*]	160	180[*]	200	220[*]

(mm)

Table 1: Bore diameter D and rod diameter d series.

Note: "*" indicates bore dia. D and rod dia. d in conformity with that specified ISO 6020/1 standard.

Table 2: Port series.

	it series.							(,
Bore dia.	40	50	63	80	90	100	110	125	
Nominal size of port	10	10	15	15	15	15	20	20	
Thread for port	M18×1.5	M18×1.5	M27×2	M27×2	M27×2	M33×2	M33×2	M33×2	
Bore dia.	140	150	160	180	200	220 +	250	280	320
Nominal size of port	25	25	25	32	32	32	40	40	40
Thread for port	M42×2	M42×2	M42×2	M48×2	M48×2	M48×2			

Note: 1. Port dia. is determined basing on the highest flow velocity (V_0 =5mm/sec) at the port.

2. If bore D≥250mm, flange for port should be split type.

Max. permissible stroke S of the cylinder at rated pressure for different installation types (see Table 3)

S₁-front flange or axial foot attachment, rod end with eye

S2- front flange or axial foot attachment, rod end without eye

 S_3 -rear flange attachment and rod end with eye

 S_4 - rear flange attachment and rod end without eye

 S_5 -rear trunnion or rear single eye attachment and rod end with eye

S₆-front trunnion attachment and rod end with eye

S7-mid-body trunnion and rod end with eys.

Table 3: Stroke series

Stroko	25 4	50	80 100 125 160 200 250						320	400	500
Stroke	630	800	1000	1250	1600	2000	2500	3150	4000	5000	

This series is in conformity with ISO 4393

	Tab	le 4: M	ax. str	oke											(mm)			
В	D ore dia			40		50		63	8	0	9	0	10	0	1	10		125
F	d od dia.		22	28	28	36	36	45	45	56	50	63	56	70	63	80	70	90
		S ₁	540	960	730	1360	990	1640	1240	1990	1370	2080	1550	2320	1700	2660	1850	2980
		S ₂	115	260	180	390	260	490	330	600	370	620	420	700	470	800	520	920
		S ₃	190	420	300	620	430	750	550	920	600	960	680	1070	760	1240	830	1390
iviax. st	гоке –	S ₄	90	170	130	240	180	300	230	360	250	380	280	420	310	480	340	540 č
		S ₅	140	290	210	210 430		520	370	640	450	660	470	740	520	860	570	970
		S ₆	350	650	480	920	560	1120	830	1360	910	1420	1040	1580	1140	1830	1250	2050
14	0	1	50	16	50	18	30	2	00		220		250		280		33	20
80	100	85	105	90	110	100	125	110	140	125	160	140	180	16	0	200	280	220
2150	3130	2280	3160	2330	3210	2560	3610	2780	4120	3240	4660	3590	4860	381	0 5	210	4600	5800
620	970	660	990	670	1000	740	1110	800	1270	940	1440	1040	1490	110	00 1	590	1350	1780
970	1460	1030	1500	1050	1510	1160	1680	1250	1920	1470	2180	1630	2270	172	20 2	420	2100	2700
390	560	410	580	420	590	470	650	510	740	590	840	650	880	69	0 9	940	840	1050
670	1020	720	1040	730	1050	800	1170	870	1340	1020	1520	1130	1580	119	90 1	690	1460	1800
1460	2150	1550	2200	1580	2220	1740	2480	1880	2830	221	3210	2440	3340	258	30 3	570	3130	3980

Note: Figures in the table are max. strokes calculated depending on their stability and that exceeding these values are non-standard ones which stability should be guaranteed by designers themselves.

2702

Configuration:

(mm)

- Note: 1. Loss caused by pipe resistance and friction in mechanism should be increased by 10% in calculated force when choosing a cylinder
 - 2. When D≤220, threaded connection at oil port should available; when D≥250, the split type port flange should be selected. The dimension in the table is size of oil port.

诸位 10mm 1 문제 3 weight (1g) m increase(1)	0.111	0.129	0.142	0.174	0.234	0.234	0.295	0.36	0.41	0.37	0.51	0.48	0.52	0.6	0.46	0.6	0.79	0.83	0.89	0.95	1.04	1.05	1.32	1.35	1.8	1.7	1.7	2.25	2,33	2.5	2.5	2.67	2.87	5 6	2.2		
L () L Larren Larren Larren																																					
重要に (1997) (1997) (1997)	3.9	3.85	6 74	6.76	8.8	9.78	16.82	10 M	19.3	23.43	33.1	31.6	41.48	4	35	52.48	64.8	19	\$1.3	33.43	133.25	131.69	102.66	120.94	181.75	183.23	183 23	240	5	321	406.58	484.5	534.3	5 STL	1000		
1 ₂ - N ₂	-	- 100	3			NN-	-	718-	-	0.1	2.11	0.1	1	-	1.17	014 -		0.8-	1. Con	0.1	MMN.	NOW -	new 1	DTW -	and a	Now -		~	DH-	-M2K		2 - M24					
N-	-	8		2	T		10.00	0.014		27.8 -	0 e . M	Q 77 H -		0.0		0 0111-	0.000	0.01	0 21.00	0.0	0 000	0 ATU -	0.004	0.00	-	- Mall		1000	Man	1	- More I.	1.14	N-N-				
<u>भ</u> _P	-	1	9	2	1	2		2		2	9	0	0 5	a H	2	1	0 00	io N	0	2	0	5	0 10	0 14	1	ie in		0 20	8	0 20	90 90	0 30	e R	B			
2	3	\$	1	5		2	8	8	5	3	6	3		8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-	9		ę	3	1	6	5	2													
1	3	K	9	-	1	9	X	8	\$	2	5	2	8	2	5	3	Ę	2	3	Ā	6	R.	8	8	8		3	¥	c	Lo	10	5	20	1			
X		e.	0	-0	1	3	ş	2	\$	2	5	3	\$	E.	5	з	5	3	2	3	5	2	-	2		2		ş	3	Je.	G	F	2	•			
53	5	š.	2	ş		5	-iei	ŝ	1	3	1	200	21.0	511	200	3	210	222	No.	100	OLC:	0.0	410	1	3	456		100	R	033	100	-	8				
WF	ę	8	:	2	:	9	3	ŧ.		a	5		5	ñ	5	2	5	3	3	5	3	B	8	5	ř	e	ŝ.	8	8	5	Ř.	8	3	3			
4F	-	2	1	\$	1	2	3	5	1	R	5	è.	1	à.	5	à.		ş.,	-	ŕ	-	f	÷	ŕ	¥	\$	-	¥	2	ŝ	£	ŝ	đ.				
5	\$	\$	8	R	3	2	ŝ	5	ğ	8	1	3	3	8		ł	are	5		₹	366	8	LBC	3		2		161	ŧ.	101	124	99	1				
ด้	2	ţ.		2	i	e	ä	2	901	2	ŝ	1	ŝ	3	5	1	3	8	8	8	g	Ř.	010	203	22	£.		Ę	5	100	S	375	3				
E.	3	B	F	2	1	2	5	1	100	1	5	4 -	271	2	3	3	2	3	YIL Y	1	UEC	î.	2	3	ą	Ş.		110	Nic.	2.00	R.	Sec.	22	1			
3	5	#	6	R .	\$	8	¥	2	8	8	8	8	ä	8	i.	3	5	3	20	2	191	2	3	8	5	2		8		5	F	UNC.	₹.	1	1		
6 B/	5	3	5	R	9	8	J	8	ä	R	8	8	5	8	F	8	8	8	YOU	3	911	-	011	110	001	1.0		140		E		160	100	USA	- Not	Ĵ	1
8	3	Ŷ	3	8	1	2	43	2	-	3	110	611		2	191	2	1.64	8	176	2	5	2	2	200	314	277		070	£.	1000	147	S.	ŝ.	3	1		
Wat	5 1 C CIN	C-TX-IN	a to oth	C.1× 311		C.1 X 211	1010	24.94	C. L. L.	7 X	CAREM	5×6.4	C. Com	7 X C.W	C - LIM	54.00M	C	TX THU	C ~ UNI	5 Y 7 H	CA CHIN	-	C ~ 3191	S Y OHE	LA VIA	7 × 046		Note u 3	THE A &	0.0	17442	640	ł	- Laws			
*	a	23	29	8	*	\$	\$	8	9	8	\$	3	8	3	3	22	3	32	33	33	33	R	깛	82	33	112	13		112	112	ñ	ä	133	126			
r.	MI6×1.5	N20 × 1.5	M20 × 1.5	M27 x2	M27 x2	M33 x2	M33 x2	W42 x2	M42 x 2	M48 x2	M42 x 2	M48 x2	M48 x2	M48 x2	M48 x2	M64 ×5	M48 x2	W80 x 3	M64 x3	N30 x 3	M64 x3	M80 x3	M80 x3	M80 x3	M80 x3	NIDC +3	NUX +3	NICC × 3	N100 × 3	NLOC × 3	M125 ×4	MI25 ×4	M125 x4	M125 x4			
E.J. Bull P.(Us)	007I	1020	2150	1510	150	0770	200	4100	AG0	5150	900	910	10200	7160	2HE	9450	16580	13000	36161	14420	21990	16960	28140	21080	33060	25630	25630	41183	30633	23900	37820	66333	46.250	80.8	100.000		
推刀 Push P ₁ (qg)	CIN.	CINT	Sills.	-	Van	196-	VIVS	TANO	00.001	ornel	12560	-	0.82	Macr	10800		DESIT	10000	12720	20202	00102	VIII-	ADDIO	Nin	Since	NITION		A027	Non	- Linear	micel.	06530	moot	100000			
유산 Red &u. OVM	a	58		36	36	\$	52	8	20	8	8	20	3	80	92	8	80	100	22	105	8	011	100	125	9	40	-	2	160	140	180	8	300	180			
選出 velocity nitic	1. B	c 4	\$	64	¥	C4	¥	¢4	1.46	64	1.45	C4	1.45	-	1.45	14	1.45	£9	1.45	-	1,45	-	1.45	-	1.45	3	-	1.45	-	1.45	~	1.46	2	1.46	-		
Bre B	107	7	5	8		8	5	8	5	2	8		-	1	×	1	UP.	Ŧ	5	3	52	3	LS)	2	S	8		14	1	50	3	19	-	3			

Table 5

Ì

The series are single-acting differential cylinder including 14 bore size and 28 specifications combined depending on 4 velocity ratios. Three types of them, front flange mounting, midbody trunnion and sub-plate mounting type cylinder can be built as double-rod and double-acting constant speed ones. Together with that with or without cushioning at their both ends, total are 28 specifications and 384 kinds of cylinder. The mounting types and dimensions of this series cylinders are in conformity with ISO 3320 and especially suitable for operating under had working and heavy-loading conditions. They are widely used in steel works, foundry, forging and machine -building industries.

ŀ	s	erie	es	Piston	Piston	Δrea					
ŀ				dia	rod	Ratio					
•	250		350	(mm)	dia.	10					
t				(1111)	(mm)	Ψ					
r	٧			40	20	1.3:1	=40/20				
9	٧		٧	40	28	2:1	=40/28				
5	٧				28	1.4:1	=50/28				
)				50							
5	٧		٧		36	2:1	=50/36				
I	٧	\Box			36	1.4:1	=63/36				
				63							
	٧	V			45	2:1	=63/45				
	V			1	45	1.4:1	=80/45				
				80							
	٧		V		2:1	=80/56					
	٧			+	56	1.4:1	=100/56				
			\sim	100							
	V		v		70	2:1	=100/70				
	¥۲		•		70	1.4:1	=125/70				
ſ		Þ		125							
P P	v	\Box	٧		90	2:1	=125/90				
	٧			140	90	1.6:1	=140/90				
	٧	\Box	٧	140	100	2:1	=140/100				
	٧			160	100	1.6:1	=160/100				
	٧		٧	100	110	2:1	=160/110				
	٧	\Box		190	110	1.6:1	=180/110				
	٧		٧	190	125	2:1	=180/125				
	٧			200	125	1.6:1	=200/125				
	٧		٧	200	140	2:1	=200/140				
	٧			220	140	1.6:1	=220/140				
	٧		٧	220	160	2:1	=220/160				
	٧			250	160	1.6:1	=250/160				
	V		٧	250	180	2:1	=250/180				
	V			220	90	1.6:1	=280/180				
	v		٧	280	200	2:1	=280/200				
	v			220	200	1.6:1	=320/200				
	V V		٧	320	220	2:1	=320/220				

Technical Data:

Operating pressure	CD/CG250 series:25 CD/CG350 series:35
Suitable operating fluid	Mineral hydraulic oil, phosphate ester and a water-glycol
	fluid
Operating temperature	-30 ~ +100
Viscosity of operating fluid	2.8~380
Running speed	0.5(if special seals are used, it could be 15m/s)
Sealing	Dynamic seal: V seal for type A cylinder at high speed
	and pressure; sliding seal for type T cylinder at low
	speed and pressure. Static seal: O ring made in China
Connecting type of head and body as well as air bleeder	Type A: thread, flange connecting
	Type B: welded cylinder bottom, threaded cylinder head;
	with air release plug at end of cylinder.
Thread for oil connections	For ports of al size cylinders, adopt GB metric fine thread
	and with worth pipe thread of BSP i.e. cylinder pipe
	thread G of China
Mounting type	Five type, A,B,C,D, E and F
Material of piston rod	High-tensile steel and stainless steel X ₂₂ CrNi17(hard
	chrome plating surface)

ingn-tensile chrome plati ouokeralionalinalinalina